Bachelor of Science कार्यक्रम अधिन्यास सत्र 2020-21

कोर्स कोड :	कोर्स शीर्षक:- (Course Title)	अधिकतम अंक : 30
Course Code: UGMM-101	Differential Calculus	Maximum Marks : 30

खण्ड अ अधिकतम अंक : 18 Section-A Maximum Marks : 18 नोट- (Instructions): Section A consists of long answer questions. Answer should be in 800 to 1000 words. All questions are compulsory.

- *1.* How many relations can be defined in a set containing 10 elements? If $A = \{1, 2, 3\}$ then write down the smallest and biggest reflexive relations in the set A.
- 2. Prove that $f: X \to Y$ is injective iff $f^{1}(\{y\}) = \{x\} \forall y \in f(X)$, and some $x \in X$
- 3. If $\lim_{x \to a} f(x) = l$ then show that $\lim_{x \to a} |f(x)| = |l|$

(Hint: Use $|f(x) - l| \ge ||f(x)| - |l||$)

खण्ड ब Section –B अधिकतम अंक : 12 Maximum Mark : 12

नोट- (Instructions): Section B consists of short answer questions. Answer should be in 200 to 300 words. All questions are compulsory.

- 4. Show that $\lim_{x \to 0} \frac{e^{\frac{1}{x}} e^{\frac{-1}{x}}}{e^{\frac{1}{x}} + e^{\frac{-1}{x}}}$ does not exist.
- 5. Find $\frac{dy}{dx}$ if x = acos³ t, y = a sin³ t
- 6. Expand log (x + a) in powers of x by Taylor's theorem.
- 7. Verify Lagrange's formula for the function $f(x) = 2x x^2$ on [0,1].

Bachelor of Science कार्यक्रम अधिन्यास सत्र 2020-21

कोर्स कोड :	कोर्स शीर्षक:- (Course Title)	अधिकतम अंक : 30
Course Code: UGMM-102	Analytical Geometry	Maximum Marks : 30

खण्ड अ अधिकतम अंक : 18 Section-A Maximum Marks : 18 नोट— (Instructions): Section A consists of long answer questions. Answer should be in 800 to 1000 words. All questions are compulsory.

- 1. Show that the equation $12x^2 10xy + 2y^2 + 11x 5y + 2 = 0$ represents a pair of straight lines. Find their equations.
- 2. Find the coordinates of the centre of the conic $41x^2 + 24xy + 9y^2 130ax 60ay + 116a^2 = 0$.
- 3. The coordinates of a point *A* are (2, 3, -5). Determine the equation to the plane through *A* at right angles to the line *OA*, where *O* is the origin.

खण्ड ब Section –B अधिकतम अंक : 12 Maximum Mark : 12

नोट— (Instructions): Section B consists of short answer questions. Answer should be in 200 to 300 words. All questions are compulsory.

- 4. Find the equation of the sphere which passes through the points (0,0,0), (a,0,0), (0,b,0) and whose centre lies on the plane x + y + z = 0
- 5. Find the equation of the cylinder with generators parallel to the x-axis and passing through the circle $x^2 + y^2 + z^2 = 9$, 2x = y + z.
- 6. Find the equation of the cone reciprocal to the cone

$$fyz + gzx + hxy = 0$$

7. Show that the plane 7x + 5y + 3z = 30 touches the ellipsoid $7x^2 + 5y^2 + 3z^2 = 60$. Find the point of contact.

Bachelor of Science कार्यक्रम अधिन्यास सत्र 2020-21

कोर्स कोड :	कोर्स शीर्षक:- (Course Title)	अधिकतम अंक : 30
Course Code: UGMM-103	Integral Calculus	Maximum Marks : 30

खण्ड अ अधिकतम अंक : 18 Section-A Maximum Marks : 18 नोट— (Instructions): Section A consists of long answer questions. Answer should be in 800 to 1000 words. All questions are compulsory.

1. Evaluate the following integrals (a) $\int a^{2x} \cos 4x \, dx$ (b) $\int e^{3x} \sin 3x \, dx$ (c) $\int e^{4x} \cos x \cos 2x \, dx$

2. Prove : If
$$C_n = \int e^{ax} \cos^n x \, dx$$
, then

$$C_n = \frac{ae^{ax} \cos^n x}{n^2 + a^2} + \frac{ne^{ax} \cos^{n-1} x \sin x}{n^2 + a^2} + \frac{n(n-1)}{n^2 + a^2} C_{n-2}$$
3. Evaluate $\int \frac{x^2 + 2x + 3}{\sqrt{x^2 + x + 1}}$

खण्ड ब Section –B अधिकतम अंक : 12 Maximum Mark : 12

नोट— (Instructions): Section B consists of short answer questions. Answer should be in 200 to 300 words. All questions are compulsory.

- 4. Prove that the line 2x + 3y = 1 touches the curve $3y = e^{-2x}$ at a point whose X-coordinate is zero.
- 5. Show that the curve $x^3 + 2x^2 + 2xy y^2 + 5x 2y = 0$ has a single cusp & first species at the point (-1, -2)
- 6. Find the area of the curve $x = a (3 \sin \theta \sin^3 \theta)$, $y = a \cos^3 \theta$, $0 \le \theta \le 2\pi$.
- 7. Find the area of the surface generated by revolving the circle r = a about the x-axis thus verify that the surface area of a sphere of radius a $is4\pi a^2$.

Bachelor of Science कार्यक्रम अधिन्यास सत्र 2020-21

कोर्स कोड :	कोर्स शीर्षक:- (Course Title)	अधिकतम अंक : 30
Course Code: UGMM-104	Differential Equation	Maximum Marks : 30

खण्ड अ अधिकतम अंक : 18 Section-A Maximum Marks : 18 नोट— (Instructions): Section A consists of long answer questions. Answer should be in 800 to 1000 words. All questions are compulsory.

1. Verify that the function $y = a\cos x + b\sin x$, where a, b \in R is a solution of the differential equation $\frac{d^2y}{dx^2} + y = 0$.

2. Show that the differential equation
$$\frac{dy}{dx} = \frac{x^2 + y^2}{x^2 + xy}$$
 is homogeneous and solve it.

$$x \frac{dy}{dx} = x^2 + 3y, \quad x > 0.$$

3. Solve the equation α

अधिकतम अंक : 12 Maximum Mark : 12

नोट- (Instructions): Section B consists of short answer questions. Answer should be in 200 to 300 words. All questions are compulsory.

4. Solve the differential equation
$$xdy + ydx = \frac{a^2(xdy - ydx)}{x^2 + y^2}$$
.

- 5. Solve the differential equation $y = x + a \tan^{-1} p$
- 6. Determine the curve whose sub-tangent is twice the abscissa of the point of contact and passes through the point (1, 2).
- 7. With reference to the following figure, which consists of a resistor of resistance R = 3 Ω , connected in series with an inductor of inductance L = 5 H, and an applied constant voltage E = 240 Volts.
 - (i) Obtain a differential equation giving the current I at time t.
 - (ii) Solve the differential equation for the initial condition, when t = 0, I = 0.

खण्ड ब Section –B