उत्तर प्रदेश राजर्षि टण्डन मुक्त विश्वविद्यालय, प्रयागराज

Bachelor of Science कार्यक्मम अधिन्यास सत्र 2020-21

कोर्स कोड :	कोर्स शीर्षक:- (Course Title)	अधिकतम अंक : 30 Course Code: UGMM-101
Maximum Marks : 30		

खण्ड अ
Section-A
नोट- (Instructions): Section A consists of long answer questions. Answer should be in 800 to $\mathbf{1 0 0 0}$ words. All questions are compulsory.

1. How many relations can be defined in a set containing 10 elements? If $\mathrm{A}=\{1,2,3\}$ then write down the smallest and biggest reflexive relations in the set A .
2. Prove that $f: X \rightarrow Y$ is injective iff $f^{l}(\{y\})=\{x\} \forall y \in f(X)$, and some $x \in X$
3. If $\lim _{x \rightarrow a} f(x)=l$ then show that $\left.\lim _{x \rightarrow a} \mid f(x)\right\}=|l|$
(Hint: Use $|\mathbf{f}(\mathbf{x})-\mathbf{l}| \geq||\mathbf{f}(\mathbf{x})|-||| |)$

खण्ड ब
Section-B

अधिकतम अंक: 12
Maximum Mark : 12

नोट- (Instructions): Section B consists of short answer questions. Answer should be in 200 to 300 words. All questions are compulsory.
4. Show that $\lim _{x \rightarrow 0} \frac{e^{\frac{1}{x}}-e^{\frac{-1}{x}}}{e^{\frac{1}{x}}+e^{\frac{-1}{x}}}$ does not exist.
5. Find $\frac{d y}{d x}$ if $\mathrm{x}=\operatorname{acos}^{3} \mathrm{t}, \mathrm{y}=\mathrm{a} \sin ^{3} \mathrm{t}$
6. Expand $\log (x+a)$ in powers of x by Taylor's theorem.
7. Verify Lagrange's formula for the function $f(x)=2 x-x^{2}$ on $[0,1]$.

उत्तर प्रदेश राजर्षि टण्डन मुक्त विश्वविद्यालय, प्रयागराज

Bachelor of Science कार्यक्मम अधिन्यास सत्र 2020-21

कोर्स कोड :	कोर्स शीर्षक:- (Course Title)	अधिकतम अंक : 30
Course Code: UGMM-102	Analytical Geometry	Maximum Marks :30

खण्ड अ
अधिकतम अंक : 18
Section-A
Maximum Marks : 18
नोट- (Instructions): Section A consists of long answer questions. Answer should be in 800
to 1000 words. All questions are compulsory.

1. Show that the equation $12 x^{2}-10 x y+2 y^{2}+11 x-5 y+2=0$ represents a pair of straight lines. Find their equations.
2. Find the coordinates of the centre of the conic $41 x^{2}+24 x y+9 y^{2}-130 a x-$ $60 a y+116 a^{2}=0$.
3. The coordinates of a point A are $(2,3,-5)$. Determine the equation to the plane through A at right angles to the line $O A$, where O is the origin.

खण्ड ब
अधिकतम अंक : 12
Section-B
Maximum Mark : 12
नोट— (Instructions): Section B consists of short answer questions. Answer should be in 200 to 300 words. All questions are compulsory.
4. Find the equation of the sphere which passes through the points $(0,0,0),(a, 0,0),(0, b, 0)$ and whose centre lies on the plane $x+y+z=0$
5. Find the equation of the cylinder with generators parallel to the x -axis and passing through the circle $x^{2}+y^{2}+z^{2}=9,2 x=y+z$.
6. Find the equation of the cone reciprocal to the cone

$$
f y z+g z x+h x y=0
$$

7. Show that the plane $7 x+5 y+3 z=30$ touches the ellipsoid $7 x^{2}+5 y^{2}+3 z^{2}=$ 60 . Find the point of contact.

उत्तर प्रदेश राजर्षि टण्डन मुक्त विश्वविद्यालय, प्रयागराज

Bachelor of Science कार्यक्मम अधिन्यास सत्र 2020-21

कोर्स कोड :	कोर्स शीर्षक:- (Course Title)	अधिकतम अंक : 30 Course Code: UGMM-103
Integral Calculus		

खण्ड अ
 अधिकतम अंक : 18

Section-A
Maximum Marks : 18
नोट- (Instructions): Section A consists of long answer questions. Answer should be in 800 to $\mathbf{1 0 0 0}$ words. All questions are compulsory.

1. Evaluate the following integrals
(a) $\int a^{2 x} \cos 4 x d x$
(b) $\int e^{3 x} \sin 3 x d x$
(c) $\int e^{4 x} \cos x \cos 2 x d x$
2. Prove : If $C_{n}=\int e^{a x} \cos ^{n} x d x$, then

$$
C_{n}=\frac{a^{a x} \cos ^{n} x}{n^{2}+a^{2}}+\frac{n e^{a x} \cos ^{n-1} x \sin x}{n^{2}+a^{2}}+\frac{n(n-1)}{n^{2}+a^{2}} C_{n-2}
$$

3. Evaluate $\int \frac{\mathrm{x}^{2}+2 \mathrm{x}+3}{\sqrt{\mathrm{x}^{2}+\mathrm{x}+1}}$

खण्ड ब
Section-B

अधिकतम अंक: 12
Maximum Mark : 12

नोट— (Instructions): Section B consists of short answer questions. Answer should be in 200 to 300 words. All questions are compulsory.
4. Prove that the line $2 x+3 y=1$ touches the curve $3 y=e^{-2 x}$ at a point whose $\mathrm{X}-$ coordinate is zero.
5. Show that the curve
$x^{3}+2 x^{2}+2 x y-y^{2}+5 x-2 y=0$
has a single cusp \& first species at the point $(-1,-2)$
6. Find the area of the curve $x=a\left(3 \sin \theta-\sin ^{3} \theta\right), y=a \cos ^{3} \theta, 0 \leq \theta \leq 2 \pi$.
7. Find the area of the surface generated by revolving the circle $r=a$ about the x-axis thus verify that the surface area of a sphere of radius a is $4 \pi \mathrm{a}^{2}$.

उत्तर प्रदेश राजर्षि टण्डन मुक्त विश्वविद्यालय, प्रयागराज

Bachelor of Science कार्यक्मम अधिन्यास सत्र 2020-21

कोर्स कोड :	कोर्स शीर्षक:- (Course Title)	अधिकतम अंक : 30
Course Code: UGMM-104	Differential Equation	Maximum Marks :30

खण्ड अ
अधिकतम अंक : 18
Section-A
Maximum Marks : 18
नोट- (Instructions): Section A consists of long answer questions. Answer should be in 800 to $\mathbf{1 0 0 0}$ words. All questions are compulsory.

1. Verify that the function $y=a \cos x+b \sin x$, where $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+y=0$.
2. Show that the differential equation $\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x^{2}+x y}$ is homogeneous and solve it.
3. Solve the equation $x \frac{d y}{d x}=x^{2}+3 y, \quad x>0$.

खण्ड ब
Section-B

अधिकतम अंक : 12
Maximum Mark : 12

नोट- (Instructions): Section B consists of short answer questions. Answer should be in 200 to 300 words. All questions are compulsory.
4. Solve the differential equation $x d y+y d x=\frac{a^{2}(x d y-y d x)}{x^{2}+y^{2}}$.
5. Solve the differential equation $y=x+a \tan ^{-1} p$
6. Determine the curve whose sub-tangent is twice the abscissa of the point of contact and passes through the point $(1,2)$.
7. With reference to the following figure, which consists of a resistor of resistance R $=3 \Omega$, connected in series with an inductor of inductance $L=5 \mathrm{H}$, and an applied constant voltage $E=240$ Volts .
(i) Obtain a differential equation giving the current I at time t.
(ii) Solve the differential equation for the initial condition, when $t=0, I=0$.

